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Abstract. This paper introduces and investigates a simple model of random porous media degradation
via several fluid displacing, freezing, and thawing cycles. The fluid transport is based on the deterministic
method. The result shows that the topology and the geometry of porous media have a strong effect on
displacement processes. The cluster size of the viscous fingering (VF) pattern in the percolation cluster
increases with the increase of iteration parameter n. When iteration parameter n ≥ 10, the VF pattern
does not change with n. When r → 1 and n ≥ 5, the peak value of the distribution Nmat(r) increases as
n increases; Nmat(r) is the normalized distribution of throat sizes after different displacement-damage but
before the freezing. The distribution of throat size N(r) after displacement but before freezing damage,
shows that the major change, after successive cycles, happens at r > 0.9. The peak value of the distribution
Ninv(r) reaches a maximum when n ≥ 10 and r = 1, where Ninv(r) is the normalized distribution of the size
of invaded throats for different iterations. This result is different from invasion percolation. The distribution
of velocities normal to the interface of VF in the percolation cluster is also studied. When n ≥ 10, the
scaling function distribution is very sharp. The sweep efficiency E increases along with the increasing of
iteration parameter n and decreases with the network size L. And E has a minimum as L increases to the
maximum size of the lattice. The VF pattern in the percolation cluster has one frozen zone and one active
zone.

PACS. 47.55.Mh Flows through porous media – 68.70.+w Whiskers and dendrites (growth, structure,
and nonelectronic properties)

1 Introduction

The flow of fluids through random porous media plays
an important role in a wide variety of environmental
and technological processes. Examples include the spread
of hazardous waste in soil, the displacement of oil in
petroleum engineering, and some separation processes
such as chromatography and catalysis. The displacement
of a viscous oil by a less viscous solvent is inherently unsta-
ble. Even when the porous medium is homogeneous, vis-
cous fingering (VF) will form, and reduce sweep efficiency.
There are several experimental and theoretical methods to
characterize the phenomenon. The first theoretical analy-
sis by Saffmann and Taylor [1] was of the related problem
of Hele-Shaw [2] flow. However, there are many differences
between Hele-Shaw and porous media flow. In particu-
lar, reservoir rocks are rarely homogeneous. The porous
media flow occurs in a discrete and highly chaotic net-
work of pores and pore throats. Real porous media have
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a wide range of porosity, or of the concentration of open
pores (occupying probability). As this concentration P de-
creases and approaches the percolation threshold Pc, there
appears a correlation length ξ ∼ |P − Pc|−ν so the per-
colation network of open pores has a fractal geometry on
length scales L < ξ. In many cases, physical phenomena
exhibit a sharp crossover from a fractal behavior (L < ξ)
to that of a homogeneous random system (L > ξ). Chen
and Wilkinson [3] demonstrate that VF has the behavior
for the L > ξ case as they do in the uniform (P = 1)
Hele-Shaw cell. Murat and Aharony [4] show that VF and
DLA exhibit many different features in the vicinity of the
percolation threshold.

Moreover, several studies [5] have shown that the
freezing of water in porous media induces usually irre-
versible damage like fractures. The internal pore structure
is strongly affected by the dilatation of the invading fluid
under freezing. A well established statement is that the
smaller a pore shape, the more damaged it will usually
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become after freezing [6]. Recently, Salmon and Ausloos
et al. [7] have studied a simple model of the fluid invasion-
freezing-thawing cycle in porous media.

In the present study, the varying percolation clus-
ters with varying occupation probabilities are first con-
structed. They correspond to connected porous media
with the site as pore and the bond as throat; the radii
of the throat follow the uniform distribution. Then, tak-
ing the center as the point of injecting, and aided by
the successive over-relaxation technique, the VF pattern
in the percolation clusters is obtained. Meanwhile, we
will introduce and study a simple model of the fluid
displacement-freezing-thawing cycles in porous media.
From this, we study the ageing of the porous media af-
ter several displacement-freeze-thaw cycles under simple
rules. The most simple one is illustrated below, and de-
scribed in Section 2. It is assumed that the water density
increases under freezing, and modifies (extends) the pore
size. Other cases (see Sect. 2) have been examined with-
out giving any other spectacular difference with respect
to those given below. VF patterns in percolation clus-
ter are shown (see Sect. 3). The kinetics of the invasion
and the fractal dimension of VF pattern is investigated in
Section 3. The velocity distribution is studied and
discussed in Section 4 Sweep efficiency of displace-
ment fluid is discussed in Section 4. Finally, Section 5
presents conclusions.

2 Model and simulation method

In a square lattice (201 × 201) with a given percolation
probability P , while P ≥ 0.59, a spanning cluster occurs;
while P = 1 the occupying ratio of the site reaches 100%.
The connectivity of the porous media varies according to
the values of P . Those sites and clusters beyond the span-
ning cluster correspond to the non-connection areas of the
sedimentary rocks. Our simulation is only concerned with
the spanning cluster. The models of porous media and
two-phase flow that we construct are as follows: The perco-
lation clusters with varying occupation probability P cor-
respond to varying porous media, with the site (node) as
pore, the bond as throat, and the throat radius is normal-
ized: r→ (r−rmin)/(rmax−rmin), where rmin and rmax are
the minimum and maximum values of the throat radius.
A similar model has also been used by some
authors [7,23–25]. Therefore, a random number ri be-
tween 0 and 1 is assigned to each throat i. The ini-
tial configuration of a 5 × 5 lattice is represented in
Figure 1a. The center of the lattice is then injected
with the invasion fluid. The displacement rule is as
follows. At each time step, only a throat with the in-
jected and displaced fluid is filled according to succes-
sive over-relaxation (see blow). The first displacement re-
sulting from the 5 × 5 lattice of Figure 1a is drawn in
Figure 1b. After the displacement fluid reaches the bound-
ary of the percolation cluster, the fluid is assumed to
freeze. In order to simulate some damage due to freez-
ing, the size of each injected throat is assumed to increase
according to the following rule [7]: ri → ri+ ∈ (1 − ri),

where ∈ is a random number taken from a flat distribu-
tion between 0 and 1. In so doing, ri(t + 1) is always in
[ri(t), 1]. In some sense, this presupposes that the throat
size itself follows the variation of the injected fluid den-
sity under freezing. An example of a damaged porous
medium after the displacement in correspondence with
that of Figure 1b is drawn in Figure 1c. The throat radius
of the frozen fluid is then assumed to follow the formula
ri → ri+ ∈ (1 − ri), and the medium to be completely
dried up. A new fluid displacement can then take place.
According to the normalized assumption of r, the maxi-
mum value of ri(t) is 1, no matter how rmax is increased.
For example, if some the throat radius is rmax, then rmax

increases to rmax + ε(ε > 0) after freezing damage. Then,
we have: r→ [(rmax+ε)−rmin)]/[(rmax+ε)−rmin). Hence,
it is inevitable that upon freezing the largest bonds (r = 1)
never modify. We have investigated a 201 × 201 percola-
tion lattice with P varying from 0.6 to 1, and iterations
up to n = 20 have been simulated. It can be illustrated
that our model is different from reference [7]. The model
of Salmon and Ausloos et al. [7] is a pore freezing process,
and our model is a throat freezing process. Moreover, the
present invasion rule is also different from reference [7]
which uses an invasion percolation rule in correspondence
with the capillary forces control of fluid invasion. We use
the deterministic method called successive over-relaxation
technique [19] (see Fig. 1).

The simulation method used here has already been de-
scribed in detail [10]. It is similar to the simulation by
Chen and Wilkinson [3], with an extension to a finite vis-
cosity ratio. The displacement is assumed to be piston-like
down each tube. The flow rate (Qij) down the tubes con-
necting i and j is given by Poiseuille’s law

Qij =
πr4
ij(pi − pj)

8[η1xij + η2(L− xij)]
= gij∆pij (1)

where pi and pj are the pressures at the ith and the jth
node, respectively, η1 and η2 are the viscosity of the in-
jected and displaced fluid, respectively, and M = η2/η1

(in this paper, M = 10) is the viscosity ratio and rij is
the radius of bond ij, and xij is the length of bond ij oc-
cupied by the injected fluid. The quantity gij is the flow
conductance of bond ij and is a function of time as the
interfaces move. At each node we have the conservation
equation ∑

j

Qij = 0. (2)

We solve equations (2, 3) for the pressure field by succes-
sive over-relaxation iterations

pi = ω

∑
j

gijpj∑
j

gij
+ (1− ω)pi (3)

where relaxation parameter ω is set to 1.66. The bound-
ary conditions are such that at the point of injection
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Fig. 1. Illustration of the displacement-freezing process. (a) A 5 × 5 lattice representing the porous medium. The lattice is a
percolation cluster. The bond radii connected with a site (symbol: O) which is not occupied are all 0. (b) The displacement of
the porous medium by a fluid (these sites are represented in dark). (c) The porous medium structure after the freezing process.

(center) p = 1, while at the point of production p = 0.
After determining the nodal pressures we move the front
a distance

∆xij =
Qij
πr2
ij

∆t (4)

into one of the pores adjacent to the interface. We choose
the time step ∆t to be the time necessary to exactly move
the front to reach a node through the fastest tube. We then
update all other fronts and for the new configurations of
the regions of the displacing and displaced fluid, calculate
the pressure field and repeat the entire process until the
outer boundary is reached. This method has been used by
many authors [3,8–23] to investigate VF. The main ad-
vantage of this method is that it allows us to investigate
displacement process. It is also called the deterministic
model [19]. While n > 1, in order to ensure the fluid con-
servation, when the displacement fluid enters the throat
ij, it first occupies the room in the throat which comes
from the enlarging of the radius, then goes on according
to equation (5).

3 Evolution of the porous medium

Figure 2 shows the VF pattern in a percolation cluster
(P = 0.8 and M = 10) for each of the first five iterations
(n = 1, 2, 5, 10, 20). For n = 1, the VF pattern is a situ-
ation which has been studied [26]. For n > 1, the cluster
size decreases with the increase of the iteration param-
eter n. It is obvious that the VF pattern shows almost
no change when n ≥ 10. The result is different from the
invasion percolation [7]. Moreover, no mater what n is,
the VF pattern grown in the percolation cluster has an
anisotropy character. This result means that the geome-
try and the topology of the porous medium strongly affect
the displacement processes and the structure.

Fig. 2. Successive VF pattern with P = 0.8 in percolation
cluster (a 201 × 201 lattice) after n = 1, 2, 5, 10 and 20 iter-
ation, where, n = 1, 2, 5, 10 and 20 in correspondence with
Figures 2a–2e.
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Fig. 3. The normalized distribution of throat sizes Nmat(r)
in the percolation cluster is different displacement damages:
n = 1, 2, 5, 10 and 20. (a): P = 0.6, (b): P = 0.8.

In Figure 3, the normalized distribution of throat size
after the displacement but before freezing, Nmat(r), shows
that the major change after successive cycles happens
at r = 1. With increasing n, a peak occurs at r = 1
whereas the distribution below r < 0.9 is relatively flat
and slightly decreases, as expected, with n. This suggests
that the deterministic model selectively chooses a larger
throat size for displacement (the reason will be explained
a little later). This is also supported by the observation
that Nmat(r = 0.05) does not change at all with n.

A plot of N(r) vs. n is shown in Figure 4, where N(r)
is the distribution of throat sizes after displacement but
before freezing damage. The major change, after succes-
sive cycles, happens at r > 0.9. And when r > 0.9, N(r)
is the same for n = 10 and n = 20. This means that the
structure of VF is stable for the above mentioned condi-
tion. As seen in Figure 4, the transition to a more stable
structure definitely happens between n = 1 and n = 5.

Figure 5 presents the normalized distribution of sizes
of invaded throats, Ninv(r), for different iterations n = 1,
2, 5, 10 and 20. The peak value of the distribution Ninv(r)
reaches a maximum when n ≥ 10 and r = 1. That means
the distribution Ninv(r) becomes stable when n ≥ 10. For
the invasion percolation [7], when n = 1, Ninv is zero al-
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Fig. 4. A plot of N(r) vs. n.

most for r ≥ 0.6, which is different from our result (see
Fig. 5). This also suggests that the deterministic model
selectively chooses larger throat sizes for displacement.
But it is just the opposite for the invasion percolation
model [7]. The reason can be explained as follows: The
invasion percolation model is consistent with that at low
capillary number, water is injected slowly into a porous
medium filled with oil, the capillary force dominates the
viscous forces, and the dynamics is determined by the local
pore radius r. Capillary forces are the strongest at the nar-
rowest pore necks. Hence, the viscous forces are negligible
in both fluids, and the principal force is due to capillary
action. At every time step the invading fluid is advanced
to the growth site that has the lowest random number
r. But, our model is a deterministic growth model. In the
viscous fingering, the principal force is due to the viscosity
of the displaced; the viscous forces dominate the capillary
force and the capillary effect is negligible. At every time
step ∆t (see Eq. (5)), the displacing fluids reach a node
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Fig. 5. The sizes distribution Ninv(r) of invaded throat in the
percolation cluster after different iterations n = 1, 2, 5, 10 and
20. (a): P = 0.6, (b): P = 0.8.

(site) through the fastest tube according to equation (5)
rather than the lowest random number r. Moreover,
according to equation (2), the flow conductance gij is
equal to πr4

ij/8[η1xij + η2(L − xij)]. This means that
gij ∝ r4

ij . Hence, the deterministic model chooses larger
throat sizes for displacement.

To show the influence of topology and geometry of the
porous medium on the structure of VF, we obtained the
pattern of VF with M = 10 for different probability P at
different parameter n. The fractal dimensions D are cal-
culated at different probabilities P at different iterations
n. In order to estimate D, we have measured the cluster
size S of VF’s pattern for different lattice size L× L and
for different iteration n and occupation probability P . As-
suming the relationship [7]: S ∼ LD, in Figure 6, we can
see that the fractal dimension D of VF is the same. When
P = 1, no matter what n is, D = 2. This means the struc-
ture of the VF cluster is compact at a finite viscosity ratio
M in the two dimensional square lattice. No matter what
P is, the fractal dimension D of VF is the same for n = 10
and n = 20. This means that the structure of VF is stable
for n ≥ 10. Moreover, no matter what n is, the fractal di-
mension D increases along with the increase of occupation
probability P . This shows that the topology and geometry
of the porous medium strongly affect on the displacement
process.
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Fig. 6. The fractal dimension D as function of occupation
probability P .

4 The velocity distribution
and sweep efficiency

In this paper, we also study the distribution of velocities
normal to the interface in the percolation cluster. The
method is described in detail in reference [20]. After each
group of sites has been added, all the interfacial veloci-
ties are analyzed, the root-mean square cluster radius R
is measured, and the total number of filled sites and sur-
face sites is recorded. Surface sites are nodes filled with
the displacing fluid, but with one or more nearest neigh-
bours occupied by the displaced fluid. At each stage, we
make a histogram of the velocity distribution, sorting the
velocities into equally spaced logarithmic bins. The num-
ber N in each bin, assuming the scaling hypothesis, will
be given by

Nd[ln(V )] = Rf(α)d(−α) (5)

where the velocity V is equal to R−α and d[ln(V )] is the
width of the logarithmic bin. Hence, α = − ln(V )/ ln(R)
and d[ln(V )] = d(−α) ln(R). This gives us a scaling
function

f(α) =
ln[N ln(R)]

ln(R)
· (6)

Figure 7 shows the effect of randomness on the velocity
distribution at viscosity ratios M = 10 and P = 0.8. The
tail of the distribution (large α) is longer for the small
parameter n. When n ≥ 10, the distribution is very sharp.
And when n = 10, 20, f(α) curve is fully a coincidence.
That means the velocity distribution f(α) becomes stable
when n ≥ 10.

A particularly useful area is in the prediction of sweep
efficiencies E [19] (= Ae/As), where, Ae and As are respec-
tively the sweep area and the percolation cluster’s area in
sweep region, respectively. Figure 8 shows that the sweep
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Fig. 7. Scaling function f(α) and the effect of the iteration
parameter P = 0.8.

efficiency E decreases along with the increasing of the it-
eration parameter n and the network size L. It is apparent
that E has a minimum as L increases to the maximum. It
is interesting to note that the E ∼ L curve has two linear
regions. That means the VF pattern has a frozen zone and
an active zone [27].

5 Conclusions

In this paper, we have introduced and investigated a sim-
ple model of porous media degradation via several fluid
displacing, freezing, and thawing cycles. The fluid trans-
port is based on a deterministic model. The develop-
ment of the model toward a more realistic one with other
constraints is obvious. And our model is different from
reference [7]. The model of Salmon and Ausloos et al. [7]
is for a pore’s freezing process, and our model is a throat’s
freezing process. Moreover, the invasion rule is also differ-
ent from reference [7] which uses the invasion percolation
rule in which the capillary forces control the fluid invasion.
The successive over-relaxation technique (the determinis-
tic method) [19] is used in this paper. The distribution
of throat size N(r) after displacement but before freezing
damage, shows that the major change, after successive cy-
cles, happens at r > 0.9. And when r > 0.9, N(r) is the
same for n = 10 and n = 20.

The cluster size of the VF pattern in the percolation
cluster increases with the increase of iteration parameter
n. When n ≥ 10, the VF pattern almost does not change.
The peak value of the distribution Ninv(r) reaches a max-
imum when n ≥ 10 and r = 1. This result is different from
invasion percolation [7]. No matter what n is, the fractal
dimension D increases along with the increase of the oc-
cupation probability P . This shows that the topology and
geometry of the porous medium have a strong effect on
the displacement process.
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Fig. 8. Sweep efficiency E as a function of network size L,
when M = 10. (a) P = 0.6, (b): P = 0.8.

The tail of the scaling function distribution f(α) (large
α) is larger for the smaller parameter n. When n ≥ 10,
the scaling function distribution is very sharp. The sweep
efficiency E increases along with the increasing of the iter-
ation parameter n and decreases along with the increasing
of the network size L. E reaches a minimum as L increases
to the maximum size of the lattice. The VF pattern in the
percolation cluster has a frozen zone and an active zone.
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